Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.040
Filtrar
1.
Mikrochim Acta ; 191(5): 284, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652331

RESUMO

A dual-mode (colorimetric/fluorescence) nanoenzyme-linked immunosorbent assay (NLISA) was developed based on Au-Cu nanocubes generating Prussian blue nanoparticles (PBNPs). It is expected that this method can be used to detect the residues of sulfonamides in the field, and solve the problem of long analysis time and high cost of the traditional method. Sulfadimethoxine (SDM) was selected as the proof-of-concept target analyte. The Au-Cu nanocubes were linked to the aptamer by amide interaction, and the Au-Cu nanocubes, SDM and antibody were immobilized on a 96-well plate using the sandwich method. The assay generates PBNPs by oxidising the Cu shells on the Au-Cu nanocubes in the presence of hydrochloric acid, Fe3+ and K3[Fe (CN)6]. In this process, the copper shell undergoes oxidation to Cu2+ and subsequently Cu2 + further quenches the fluorescence of the carbon point. PBNPs exhibit peroxidase-like activity, oxidising 3,3',5,5'-tetramethylbenzidine (TMB) to OX-TMB in the presence of H2O2, which alters the colorimetric signal. The dual-mode signals are directly proportional to the sulfadimethoxine concentration within the range 10- 3~10- 7 mg/mL. The limit of detection (LOD) of the assay is 0.023 ng/mL and 0.071 ng/mL for the fluorescent signal and the colorimetric signal, respectively. Moreover, the assay was successfully applied to determine sulfadimethoxine in silver carp, shrimp, and lamb samples with satisfactory results.


Assuntos
Carbono , Colorimetria , Cobre , Ferrocianetos , Sulfadimetoxina , Ferrocianetos/química , Sulfadimetoxina/análise , Sulfadimetoxina/química , Cobre/química , Colorimetria/métodos , Carbono/química , Limite de Detecção , Ouro/química , Pontos Quânticos/química , Fluorometria/métodos , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Nanopartículas/química , Animais , Ensaio de Imunoadsorção Enzimática/métodos
2.
Talanta ; 273: 125857, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38490024

RESUMO

An electrochemical aptasensor was developed for the determination of chloramphenicol (CAP) in fresh foods and food products. The aptasensor was developed using Prussian blue (PB) and chitosan (CS) film. PB acts as a redox probe for detection and CS acts as a sorption material. The aptamer (Apt) was immobilized on a screen-printed carbon electrode (SPCE) modified with gold nanoparticles (AuNPs). Under optimum conditions, the linearity of the aptasensor was between 1.0 and 6.0 × 106 ng L-1 with a detection limit of 0.65 and a quantification limit of 2.15 ng L-1. The electrode could be regenerated up to 24 times without the use of chemicals. The aptasensor showed good repeatability (RSD <11.2%) and good reproducibility (RSD <7.7%). The proposed method successfully quantified CAP in milk, shrimp pond water and shrimp meat with good accuracy (recovery = 88.0 ± 0.6% to 100 ± 2%). The proposed aptasensor could be especially useful in agriculture to ensure the quality of food and the environment and could be used to determine other antibiotics.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Quitosana , Ferrocianetos , Nanopartículas Metálicas , Carbono , Ouro , Limite de Detecção , Cloranfenicol/análise , Reprodutibilidade dos Testes , Eletrodos , Carne , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
3.
Int Immunopharmacol ; 131: 111868, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38493692

RESUMO

Mitochondrial injury, neuronal apoptosis and phenotypic transformation of macrophages are the main mechanisms of spinal cord injury. Based on the Prussian blue nanomase's strong ability to clear free radicals, the treatment of spinal cord injury with nano-zirconium (Pb-Zr) was carried out. The disease treatment strategy based on nanomaterials has excellent therapeutic effect, and Prussian blue analogs have good therapeutic properties, so the application prospects of Prussian blue analogs is broad. From the point of view of Prussian blue content, improving the presence of zirconium in the microenvironment significantly increased the activity of Prussian blue. Prussian Blue zirconium significantly improved lipopolysaccharide (LPS) and interferon (IFN-γ) induced neuronal cell (pc12 cells) and macrophage dysfunction by improving oxidative stress, inflammation, and apoptosis in the microenvironment. It can promote the recovery of motor function after spinal cord injury. In vivo experiments, it shows that Prussian blue zirconium can improve inflammation, apoptosis and oxidative stress of spinal cord tissue, promote regenerative therapy after spinal cord injury, and improve motor function. Moreover, it has been reported that high-priced Zr4+ cations can regulate the deposition and nucleation behavior of Zn2+ in high-performance zinc metal anodes. Therefore, we propose the hypothesis that Pb-Zr modulates Zn2+ be used to promote recovery from spinal cord injury. The results show that nanomaterial is beneficial in the treatment of spinal cord injury. This study provides a good prospect for the application of spinal cord injury treatment. It also provides an important feasibility for subsequent clinical conversions.


Assuntos
Ferrocianetos , Chumbo , Traumatismos da Medula Espinal , Ratos , Animais , Chumbo/farmacologia , Chumbo/uso terapêutico , Zircônio/uso terapêutico , Zircônio/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal , Inflamação/tratamento farmacológico , Zinco/uso terapêutico , Zinco/farmacologia
4.
Int Immunopharmacol ; 131: 111848, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479156

RESUMO

BACKGROUNDS: Joint iron overload in hemochromatosis induces M1 polarization in synovial macrophages, releasing pro-inflammatory factors and leading to osteoarthritis development. However, the mechanism by which iron overload regulates M1 polarization remains unclear. This study aims to elucidate the mechanism by which synovial iron overload promotes macrophage M1 polarization. METHODS: In vitro, RAW264.7 macrophages were treated with iron and divided into five groups based on the concentration of the iron chelator, desferrioxamine (DFO): Ctrl, Fe, DFO1, DFO2, and DFO3. In vivo, rats were categorized into five groups based on iron overload and intra-articular DFO injection: A-Ctrl, A-Fe, A-DFO1, A-DFO2, and A-DFO3. Osteoarthritis was induced by transecting the left knee anterior cruciate ligament. Macrophage morphology was observed; Prussian Blue staining quantified iron deposition in macrophages, synovium, and liver; serum iron concentration was measured using the ferrozine method; cartilage damage was assessed using H&E and Safranin O-Fast Green staining; qPCR detected iNOS and Arg-1 expression; Western Blot analyzed the protein expression of iNOS, Arg-1, 4E-BP1, phosphorylated 4E-BP1, p70S6K, and phosphorylated p70S6K; ELISA measured TNF-α and IL-6 concentrations in supernatants; and immunohistochemistry examined the protein expression of F4/80, iNOS, Arg-1, 4E-BP1, phosphorylated 4E-BP1, p70S6K, and phosphorylated p70S6K in the synovium. RESULTS: In vitro, iron-treated macrophages exhibited Prussian Blue staining indicative of iron overload and morphological changes towards M1 polarization. qPCR and Western Blot revealed increased expression of the M1 polarization markers iNOS and its protein. ELISA showed elevated TNF-α and IL-6 levels in supernatants. In vivo, ferrozine assay indicated significantly increased serum iron concentrations in all groups except A-Ctrl; Prussian Blue staining showed increased liver iron deposition in all groups except A-Ctrl. Iron deposition in rat synovium decreased in a DFO concentration-dependent manner; immunohistochemistry showed a corresponding decrease in iNOS and phosphorylated 4E-BP1 expression, and an increase in Arg-1 expression. CONCLUSION: Intracellular iron overload may exacerbate joint cartilage damage by promoting synovial macrophage M1 polarization through phosphorylation of 4E-BP1 in the mTORC1-p70S6K/4E-BP1 pathway.


Assuntos
Hemocromatose , Sobrecarga de Ferro , Osteoartrite , Animais , Ratos , Ferrocianetos , Ferrozina , Hemocromatose/metabolismo , Hemocromatose/patologia , Interleucina-6 , Ferro , Alvo Mecanístico do Complexo 1 de Rapamicina , Osteoartrite/metabolismo , Osteoartrite/patologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fator de Necrose Tumoral alfa
5.
Mikrochim Acta ; 191(4): 207, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499896

RESUMO

A miniature L-glutamate (L-Glu) biosensor is described based on Prussian blue (PB) modification with improved stability by using self-assembled monolayers (SAMs) technology and polydopamine (PDA). A gold microelectrode (AuME) was immersed in NH2(CH2)6SH-ethanol solution, forming well-defined SAMs via thiol-gold bonding chemistry which increased the number of deposited Prussian blue nanoparticles (PBNPs) and confined them tightly on the AuME surface. Then, dopamine solution was dropped onto the PBNPs surface and self-polymerized into PDA to protect the PB structure from destruction. The PDA/PB/SAMs/AuME showed improved stability through CV measurements in comparison with PB/AuME, PB/SAMs/AuME, and PDA/PB/AuME. The constructed biosensor achieved a high sensitivity of 70.683 nA µM-1 cm-2 in the concentration range 1-476 µM L-Glu with a low LOD of 0.329 µM and performed well in terms of selectivity, reproducibility, and stability. In addition, the developed biosensor was successfully applied to the determination of L-Glu in tomato juice, and the results were in good agreement with that of high-performance liquid chromatography (HPLC). Due to its excellent sensitivity, improved stability, and miniature volume, the developed biosensor not only has a promising potential for application in food sample analysis but also provides a good candidate for monitoring L-Glu level in food production.


Assuntos
Técnicas Biossensoriais , Ferrocianetos , Ácido Glutâmico , Indóis , Polímeros , Reprodutibilidade dos Testes , Ouro/química , Técnicas Biossensoriais/métodos
6.
Biosens Bioelectron ; 254: 116188, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484412

RESUMO

Prussian blue analogues (PBAs) are promising materials due to their rich active sites and straightforward synthesis. However, their limited conductivity and electron transfer inefficiency hinder practical applications. This study utilizes a simple one-pot synthesis approach to produce a tungsten-disulfide (WS2) and iron-cobalt Prussian blue analogue composite (WS2-PBA), enhancing conductivity and electron transfer rate performance. Through the inclusion of sodium citrate into the solution, the S-edge site concentration of WS2 increases. This augmentation introduces additional active sites and defects into the catalyst, enhancing its catalytic activity. The effectiveness of the WS2-PBA 3D-Origami paper device for lactate detection in sweat is also evaluated for biomedical applications. The device demonstrated a robust relationship between the lactate concentration and current intensity (R2 = 0.997), with a detection limit of 1.83 mM. Additionally, this platform has successfully detected lactate in clinical sweat, correlating with the high-performance liquid chromatography test results, suggesting promising prospects for clinical diagnosis. In the future, the excellent catalytic and Rct performance of the WS2-PBA will enable its use in biomedical applications.


Assuntos
Técnicas Biossensoriais , Suor , Ferrocianetos , Ácido Láctico
7.
Int J Biol Macromol ; 264(Pt 1): 130479, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431003

RESUMO

This work reports an improved enzyme-linked immunosorbent assay (ELISA) via the interaction between prussian blue nanoparticles (PBNPs) and amines for aflatoxin B1 (AFB1) detection. The effect of different amines on the structure and properties of PBNPs was systematically investigated. Amines with pKb < 7, like ethylenediamine (EDA), can decompose structure of PBNPs, leading to the reduction of extinction coefficient and photothermal effect. Whereas, amines with large pKb > 7, such as o-phenylenediamine (OPD), could undergo catalytic oxidation by PBNPs, resulting in the production of fluorescent and colored oxidation products. Accordingly, EDA and OPD were used to construct improved ELISA. Specifically, silica nanoparticles, on which AFB1 aptamer and amino binding agent (ethylenediaminetetraacetic acid disodium salt, EDTA•2Na) were previously assembled via carboxyl-amino linkage, are anchored to microplates by AFB1 and antibody. EDA concentration can be regulated by EDTA•2Na to affect extinction coefficient and photothermal effect of PBNPs, thereby achieving visual colorimetric and portable photothermal signal readout (Model 1). OPD concentration can also be controlled by EDTA•2Na, thus generating colorimetric and ultrasensitive fluorescent signals through PBNPs catalysis (Model 2). The proposed strategy not only opens new avenue for signal readout mode of biosensing, but also provides universal technique for hazards.


Assuntos
Técnicas Biossensoriais , Ferrocianetos , Nanopartículas , Aflatoxina B1/análise , Aminas , Nanopartículas/química , Ensaio de Imunoadsorção Enzimática , Técnicas Biossensoriais/métodos , Limite de Detecção
8.
Chemosphere ; 353: 141570, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447900

RESUMO

Selective adsorption is the most suitable technique for eliminating trace amounts of 137Cs from various volumes of 137Cs-contaminated water, including seawater. Although various metal ferrocyanide (MFC)-functionalized magnetic adsorbents have been developed for the selective removal of 137Cs and magnetic recovery of adsorbents, their adsorption capacity for Cs remains low. Here, magnetic hierarchical titanium ferrocyanide (mh-TiFC) was synthesized for the first time for enhanced Cs adsorption. Hierarchical TiFC, comprising 2-dimensional TiFC flakes, was synthesized on SiO2-coated magnetic Fe3O4 particles using a sacrificial TiO2 shell as a source of Ti4+ via a reaction with ferrocyanide under acidic conditions. The resultant mh-TiFC exhibited the highest maximum adsorption capacity (434.8 mg g-1) and enhanced Cs selectivity with an excellent Kd value (6,850,000 mL g-1) compared to those of previously reported magnetic Cs adsorbents. This enhancement was attributed to the hierarchical structure, which reduced intracrystalline diffusion and increased the surface area available for direct Cs adsorption. Additionally, mh-TiFC (0.1 g L-1) demonstrated an excellent removal efficiency of 137Cs exceeding 99.85% for groundwater and seawater containing approximately 22 ppt 137Cs. Therefore, mh-TiFC offers promising applications for the treatment of 137Cs-contaminated water.


Assuntos
Radioisótopos de Césio , Césio , Poluentes Químicos da Água , Césio/química , Água/química , Titânio , Ferrocianetos/química , Dióxido de Silício/química , Adsorção , Fenômenos Magnéticos , Poluentes Químicos da Água/análise
9.
Food Chem ; 448: 139154, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555687

RESUMO

A self-reporting molecularly-imprinted electrochemical sensor is prepared for the detection of Zearalenone (ZEA). Firstly, the reduced graphene nanoribbons and reduced graphene oxide (rGNR-rGO) were simultaneously modified onto a glassy carbon electrode (GCE) to improve the sensor's sensitivity. After electrodepositing copper nanoparticles onto the rGNR-rGO/GCE, cyclic voltammetry scanning was performed in potassium ferrocyanide solution, and copper hexacyanoferrate (CuHCF) was deposited onto rGNR-rGO/GCE to further improve the sensor's sensitivity while giving it self-reporting capability. Then, molecularly-imprinted polymer films were prepared on the CuHCF/rGNR-rGO/GCE to ensure the selectivity of the sensor. It is found that the linear range of ZEA detection by the constructed sensor is 0.25-500 ng·mL -1, with a detection limit of 0.09 ng·mL -1. This sensor shows the merits of good selectivity, high sensitivity and accurate detection, providing a great possibility for the precise detection of low concentration ZEA in food.


Assuntos
Cobre , Técnicas Eletroquímicas , Contaminação de Alimentos , Grafite , Impressão Molecular , Zearalenona , Grafite/química , Técnicas Eletroquímicas/instrumentação , Zearalenona/análise , Contaminação de Alimentos/análise , Cobre/química , Limite de Detecção , Eletrodos , Ferrocianetos/química
10.
ACS Appl Mater Interfaces ; 16(12): 14467-14473, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38491944

RESUMO

Surface-enhanced Raman scattering (SERS) has great potential in biological analysis due to its specificity, sensitivity, and non-invasive nature. However, effectively extracting Raman information and avoiding spectral overlapping from biological background interference remain major challenges. In this study, we developed a background-free SERS nanosensor consisting of gold nanobipyramids (Au NBPs) core-Prussian blue (PB) shell (Au NBPs@PB), for endogenous H2S detection. The PB shell degraded quickly upon contact with endogenous H2S, generating a unique Raman signal response in the Raman silent region (1800-2800 cm-1). By taking advantage of the high SERS-activity of Au NBPs and H2S-triggered spectral changes of PB, these SERS nanosensors effectively minimize potential biological interferences. The nanosensor exhibits a detection range of 2.0 µM to 250 µM and a limit of detection (LOD) of 0.34 µM, with good reproducibility and minimal interference. We successfully applied this background-free SERS platform to monitor endogenous H2S concentrations in human serum samples with satisfied results.


Assuntos
Ferrocianetos , Sulfeto de Hidrogênio , Nanopartículas Metálicas , Humanos , Sulfeto de Hidrogênio/análise , Ouro , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos
11.
Anal Methods ; 16(13): 1923-1933, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38497295

RESUMO

In this paper, a label-free electrochemical immunosensor for sensitive detection of prostate antigen (PSA) was developed based on a NiFe PBA/AuNPs composite. The prostate antigen antibody was immobilized and the immunosensor was constructed by using a glassy carbon electrode modified with a nanocomposite consisting of nickel-iron Prussian blue analog (NiFe PBA) and gold nanoparticles (AuNPs). Due to the good biological affinity of AuNPs for biomolecules, as well as the porous nanostructure and regular shape of NiFe PBA, NiFe PBA/AuNPs nanocomposites significantly improve the electron transport rate, while achieving excellent performance for the sensor. Due to the interaction between the antibody and the antigen on the modified electrode, the current signal of the NiFe PBA itself is reduced due to the redox changes in Fe2+ and Fe3+, which can be determined by differential pulse voltammetry (DPV). Therefore, the monitoring of prostate antigen detection is realized. Under optimal experimental conditions, the immunosensor exhibited excellent detection performance with a dynamic response range from 0.5 pg mL-1 to 1000 pg mL-1 for the PSA concentration and a detection limit of 0.23 pg mL-1 (S/N = 3). In addition, the PSA aptasensor has good selectivity, high stability, and satisfactory reproducibility and has broad potential in clinical research and diagnostic applications.


Assuntos
Técnicas Biossensoriais , Ferrocianetos , Nanopartículas Metálicas , Nanocompostos , Masculino , Humanos , Antígeno Prostático Específico , Ouro/química , Níquel/química , Técnicas Eletroquímicas , Ferro , Reprodutibilidade dos Testes , Imunoensaio , Nanopartículas Metálicas/química , Nanocompostos/química
12.
Talanta ; 273: 125848, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432072

RESUMO

Prussian blue analogues, as prospective electrode materials, play a crucial role in detecting heavy metal ions (HMIs), a process closely related to their electron transfer capacities and active surfaces. Here, etched copper-iron Prussian blue analogues (CuFe-PBA) are synthesized through a combination of flash nanoprecipitation (FNP) and an alkali etching process. Furthermore, this study investigates the impact of ammonia on the electronic structure of CuFe-PBA and its electrochemical detection capabilities for HMIs. The etched CuFe-PBA (e-CuFe-PBA) exhibits excellent detection performance for Cd2+, Pb2+ and Hg2+ with 17.6 µA µM-1, 24.2 µA µM-1 and 26.2 µA µM-1, respectively, due to the fact that the ammonia etching not only modulates the electronic properties of the surface of CuFe-PBA but also reduces the degree of agglomeration and enhances the accessible surface area. Additionally, it demonstrates excellent stability and resistance to interference, having been successfully applied to detect HMIs in food samples such as preserved eggs and apple juice. These results provide a new strategy for the use of Prussian blue analogues as electrochemical sensors for food safety applications.


Assuntos
Cádmio , Ferrocianetos , Mercúrio , Chumbo , Amônia , Estudos Prospectivos , Ovos
13.
Int J Nanomedicine ; 19: 1645-1666, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406599

RESUMO

Purpose: In this study, a detailed characterization of a rabbit model of atherosclerosis was performed to assess the optimal time frame for evaluating plaque vulnerability using superparamagnetic iron oxide nanoparticle (SPION)-enhanced magnetic resonance imaging (MRI). Methods: The progression of atherosclerosis induced by ballooning and a high-cholesterol diet was monitored using angiography, and the resulting plaques were characterized using immunohistochemistry and histology. Morphometric analyses were performed to evaluate plaque size and vulnerability features. The accumulation of SPIONs (novel dextran-coated SPIONDex and ferumoxytol) in atherosclerotic plaques was investigated by histology and MRI and correlated with plaque age and vulnerability. Toxicity of SPIONDex was evaluated in rats. Results: Weak positive correlations were detected between plaque age and intima thickness, and total macrophage load. A strong negative correlation was observed between the minimum fibrous cap thickness and plaque age as well as the mean macrophage load. The accumulation of SPION in the atherosclerotic plaques was detected by MRI 24 h after administration and was subsequently confirmed by Prussian blue staining of histological specimens. Positive correlations between Prussian blue signal in atherosclerotic plaques, plaque age, and macrophage load were detected. Very little iron was observed in the histological sections of the heart and kidney, whereas strong staining of SPIONDex and ferumoxytol was detected in the spleen and liver. In contrast to ferumoxytol, SPIONDex administration in rabbits was well tolerated without inducing hypersensitivity. The maximum tolerated dose in rat model was higher than 100 mg Fe/kg. Conclusion: Older atherosclerotic plaques with vulnerable features in rabbits are a useful tool for investigating iron oxide-based contrast agents for MRI. Based on the experimental data, SPIONDex particles constitute a promising candidate for further clinical translation as a safe formulation that offers the possibility of repeated administration free from the risks associated with other types of magnetic contrast agents.


Assuntos
Aterosclerose , Compostos Férricos , Ferrocianetos , Nanopartículas de Magnetita , Placa Aterosclerótica , Coelhos , Ratos , Animais , Meios de Contraste/química , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Óxido Ferroso-Férrico , Nanopartículas de Magnetita/química , Aterosclerose/induzido quimicamente , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Imageamento por Ressonância Magnética/métodos
14.
Biomed Pharmacother ; 173: 116311, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412718

RESUMO

Chronic wound infections, particularly multidrug-resistant microbe-caused infections, have imposed severe challenges in clinical administration. The therapeutic effectiveness of the current strategy using conventional antibiotics is extremely unsatisfactory. The development of novel treatment strategies to inhibit the infections caused by multidrug-resistant bacteria is highly desired. In this work, based on the combination of nanocompounds with the assistance of NIR laser, an antibacterial strategy was designed for MRSA-infected abscesses in diabetic mice. The nanocompounds named Ag@Chi-PB were prepared by using chitosan-coated Prussian blue (PB) as a nanocarrier for silver nanoparticles anchoring. Combined with near-infrared (NIR) laser, the nanocompounds were more efficient at killing Escherichia coli (E. coli) and Methicillin-resistant staphyllococcus aureus (MRSA) in vitro. Notably, MRSA was significantly removed in vivo and promoted diabetic abscess healing by the combined therapy of this nanocompound and NIR laser, owing to the synergistic antibacterial effect of photothermal therapy and release of Ag+. Meanwhile, the nanocompound showed satisfactory biocompatibility and superior biosafety. Collectively, the combination therapy of this nanocompound with the assistance of NIR laser may represent a promising strategy for clinical anti-infection.


Assuntos
Diabetes Mellitus Experimental , Ferrocianetos , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Animais , Camundongos , Abscesso/tratamento farmacológico , Prata/farmacologia , Nanopartículas Metálicas/uso terapêutico , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Raios Infravermelhos , Lasers
15.
Tissue Cell ; 87: 102316, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301585

RESUMO

Prussian blue nanozymes (PBNs) with multiple enzyme activities are prepared and their activities of antitumor in nasopharyngeal carcinoma cells (CEN2) are also explored in this research. On the one hand, it shows that PBNs can exert the catalase-like (CAT-like) activity to decompose hydrogen peroxide (H2O2) into non-toxic H2O in CEN2 cells. The O2 release of H2O2 catalysed by PBNs effectively alleviates the hypoxic environment of tumors, which inhibits the glycolysis of tumor and reduces the production of lactic acid. On the other hand, we also find that PBNs also has peroxidase-like (POD-like) enzymatic activity, which can catalyze the production of·OH from H2O2 in tumor cells and result in tumor cell apoptosis. This study lays a solid biomedical foundation for the development of safe and non-toxic nanozymes, as well as the expansion of their application in tumor treatment.


Assuntos
Ferrocianetos , Peróxido de Hidrogênio , Neoplasias Nasofaríngeas , Humanos , Oxirredução , Carcinoma Nasofaríngeo
16.
Int J Pharm ; 653: 123888, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38342325

RESUMO

The goal of this work was to examine the heat-sensitizing effects of Janus-coated magnetic nanoparticles (JMNPs) as a vehicle for 5-fluorouracil (5-Fu) and Quercetin (Qu) in C6 and OLN-93 cell lines. The cellular uptake of nanoparticles was evaluated using Prussian blue staining and ICP-OES after monolayer culturing of C6 (rat brain cancer cell) and OLN-93 (normal rat brain cell) cells. The cells were treated with free 5-Fu, Qu, and MJNPs loaded with Qu/5-Fu for 24 h, followed by magnetic hyperthermia under an alternating magnetic field (AMF) at a temperature of 43 °C. Using the MTT test and Flow cytometry, the C6 and OLN-93 cells were investigated after being subjected to hyperthermia with and without magnetic nanoparticles. The results of Prussian blue staining confirmed the potential of MJNPs as carriers that facilitate the uptake of drugs by cancer cells. The results showed that the combined application of Qu/5-Fu/MJNPs with hyperthermia significantly increased the amount of ROS production compared to interventions without MJNPs. The therapeutic results demonstrated that the combination of Qu/5-Fu/MJNPs with hyperthermia considerably enhanced the rate of apoptotic and necrotic cell death compared to that of interventions without MJNPs. Furthermore, MTT findings indicated that controlled exposure of Qu/5-Fu/MJNPs to AMF caused a synergistic effect. The advanced Janus magnetic nanoparticles in this study can be proposed as a promising dual drug carrier (Qu/5-Fu) and thermosensitizer platform for dual-modal synergistic cancer therapy.


Assuntos
Ferrocianetos , Hipertermia Induzida , Nanopartículas , Polietilenoglicóis , Polietilenoimina , Ratos , Animais , Nanogéis , Preparações de Ação Retardada , Hipertermia Induzida/métodos , Fluoruracila , Linhagem Celular Tumoral , Quercetina/farmacologia
17.
ACS Biomater Sci Eng ; 10(3): 1530-1543, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38372216

RESUMO

Atherosclerosis management heavily relies on the suppression of the inflammatory response of macrophages. Colchicine's potent anti-inflammatory properties make it a promising candidate for secondary prevention against cardiovascular disease. However, its high toxicity and numerous adverse effects limit its clinical use. To address this, there is an urgent need for specific drug delivery systems to boost the level of accumulation of colchicine within atherosclerotic plaques. In this study, the cluster of differentiation-44 receptor was verified to be overexpressed in inflammatory macrophages within plaques both in vitro and in vivo. Subsequently, a Prussian blue-based nanomedical loading system with hyaluronic acid (HA) coating was constructed, and its effects were observed on the atherosclerosis regression. Colchicine and Cy5.5 were encapsulated within Prussian blue nanoparticles through self-assembly, followed by conjugation with hyaluronic acid to create col@PBNP@HA. The formulated col@PBNP@HA displayed a cubic shape and scattered distribution. Importantly, col@PBNP@HA demonstrated specific cellular uptake into lipopolysaccharide-stimulated macrophages. In vitro experiments showed that col@PBNP@HA more effectively inhibited expression of inflammatory factors and scavenged reactive oxygen species compared with the control group, which were treated with colchicine. Furthermore, col@PBNP@HA exhibited its specific and higher accumulation in aortic plaque analysis via fluorescence imaging of aortas. After 4 weeks, administration of col@PBNP@HA resulted in significant atherosclerosis regression in the mice model, with therapeutic effects superior to those of free colchicine. Similar to colchicine, col@PBNP@HA inhibited the secretion of inflammation factors and scavenged ROS through the regulation of the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (Myd88)/nuclear factor kappa-B (NF-κB) and peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) signaling pathway. In summary, col@PBNP@HA demonstrated specific targeting ability to inflammatory plaques and exerted beneficial effects on atherosclerosis regression through TLR4/Myd88/NF-κB and PGC-1α modulation.


Assuntos
Aterosclerose , Ferrocianetos , Nanopartículas , Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/tratamento farmacológico , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Ácido Hialurônico , NF-kappa B/metabolismo , NF-kappa B/uso terapêutico , Fator 88 de Diferenciação Mieloide/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo
18.
Eur J Pharmacol ; 968: 176354, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316248

RESUMO

Sepsis is a life-threatening condition involving dysfunctional organ responses stemming from dysregulated host immune reactions to various infections. The lungs are most prone to failure during sepsis, resulting in acute lung injury (ALI). ALI is associated with oxidative stress and inflammation, and current therapeutic strategies are limited. To develop a more specific treatment, this study aimed to synthesise Prussian blue nanozyme (PBzyme), which can reduce oxidative stress and inflammation, to alleviate ALI. PBzyme with good biosafety was synthesised using a modified hydrothermal method. PBzyme was revealed to be an activator of haem oxygenase-1 (HO-1), improving survival rate and ameliorating lung injury in mice. Zinc protoporphyrin, an inhibitor of HO-1, inhibited the prophylactic therapeutic efficacy of PBzyme on ALI, and affected the nuclear factor-κB signaling pathway and activity of HO-1. This study demonstrates that PBzyme can alleviate oxidative stress and inflammation through HO-1 and has a prophylactic therapeutic effect on ALI. This provides a new strategy and direction for the clinical treatment of sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Ferrocianetos , Sepse , Camundongos , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/prevenção & controle , Heme Oxigenase-1/metabolismo , Pulmão , Inflamação/complicações , Inflamação/tratamento farmacológico , Sepse/complicações , Sepse/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo
19.
Adv Healthc Mater ; 13(8): e2303206, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224563

RESUMO

Intervertebral disc degeneration (IVDD) is invariably accompanied by excessive accumulation of reactive oxygen species (ROS), resulting in progressive deterioration of mitochondrial function and senescence in nucleus pulposus cells (NPCs). Significantly, the main ROS production site in non-immune cells is mitochondria, suggesting mitochondria is a feasible therapeutic target to reverse IVDD. Triphenylphosphine (TPP), which is known as mitochondrial-tropic ligands, is utilized to modify carbon dot-supported Prussian blue (CD-PB) to scavenge superfluous intro-cellular ROS and maintain NPCs at normal redox levels. CD-PB-TPP can effectively escape from lysosomal phagocytosis, permitting efficient mitochondrial targeting. After strikingly lessening the ROS in mitochondria via exerting antioxidant enzyme-like activities, such as superoxide dismutase, and catalase, CD-PB-TPP rescues damaged mitochondrial function and NPCs from senescence, catabolism, and inflammatory reaction in vitro. Imaging evaluation and tissue morphology assessment in vivo suggest that disc height index, mean grey values of nucleus pulposus tissue, and histological morphology are significantly improved in the IVDD model after CD-PB-TPP is locally performed. In conclusion, this study demonstrates that ROS-induced mitochondrial dysfunction and senescence of NPCs leads to IVDD and the CD-PB-TPP possesses enormous potential to rescue this pathological process through efficient removal of ROS via targeting mitochondria, supplying a neoteric strategy for IVDD treatment.


Assuntos
Ferrocianetos , Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Degeneração do Disco Intervertebral/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias
20.
Acta Biomater ; 176: 77-98, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176673

RESUMO

Prussian blue (PB) nanoparticles (NPs) and Prussian blue analogs (PBAs) can form metal-organic frameworks through the programmable coordination of ferrous ions with cyanide. PB and PBAs represent a burgeoning class of hybrid functional nano-systems with a wide-ranging application spectrum encompassing biomedicine, cancer diagnosis, and therapy. A comprehensive overview of recent advancements is crucial for gaining insights for future research. In this context, we reviewed the synthesis techniques and surface modification strategies employed to tailor the dimensions, morphology, and attributes of PB NPs. Subsequently, we explored advanced biomedical utilities of PB NPs, encompassing photoacoustic imaging, magnetic resonance imaging, ultrasound (US) imaging, and multimodal imaging. In particular, the application of PB NPs-mediated photothermal therapy, photodynamic therapy, and chemodynamic therapy to cancer treatment was reviewed. Based on the literature, we envision an evolving trajectory wherein the future of Prussian blue-driven biological applications converge into an integrated theranostic platform, seamlessly amalgamating bioimaging and cancer therapy. STATEMENT OF SIGNIFICANCE: Prussian blue, an FDA-approved coordinative pigment with a centuries-long legacy, has paved the way for Prussian blue nanoparticles (PB NPs), renowned for their remarkable biocompatibility and biosafety. These PB NPs have found their niche in biomedicine, playing crucial roles in both diagnostics and therapeutic applications. The comprehensive review goes beyond PB NP-based cancer therapy. Alongside in-depth coverage of PB NP synthesis and surface modifications, the review delves into their cutting-edge applications in the realm of biomedical imaging, encompassing techniques such as photoacoustic imaging, magnetic resonance imaging, ultrasound imaging, and multimodal imaging.


Assuntos
Ferrocianetos , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Medicina de Precisão , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...